This guide demonstrate how to use the MicroProfile OpenAPI functionality in WildFly to expose an OpenAPI document for a simple REST application.
To complete this guide, you will need:
-
less than 15 minutes
-
JDK 11+ installed with
JAVA_HOME
configured appropriately -
Apache Maven 3.5.3+
In the following instructions, replace WILDFLY_HOME
with the actual path to your WildFly installation. The installation path is described in detail here: Use of WILDFLY_HOME and JBOSS_HOME Variables.
When you see the replaceable variable QUICKSTART_HOME, replace it with the path to the root directory of all of the quickstarts.
-
Open a terminal and navigate to the root of the WildFly directory.
-
Start the WildFly server with the MicroProfile profile by typing the following command.
$ WILDFLY_HOME/bin/standalone.sh -c standalone-microprofile.xml
NoteFor Windows, use the WILDFLY_HOME\bin\standalone.bat
script.
-
Make sure WildFly server is started.
-
Open a terminal and navigate to the root directory of this quickstart.
-
Type the following command to build the quickstart.
$ mvn clean package
-
Type the following command to deploy the quickstart.
$ mvn wildfly:deploy
This deploys the microprofile-openapi/target/microprofile-openapi.war
to the running instance of the server.
You should see a message in the server log indicating that the archive deployed successfully.
Run following command in your terminal:
$ curl http://localhost:8080/openapi
It should return a YAML document conforming to the OpenAPI specification:
openapi: 3.0.1
info:
title: Store inventory
description: Application for tracking store inventory
version: "1.0"
servers:
- url: /microprofile-openapi
paths:
/:
get:
responses:
"200":
description: OK
content:
text/plain:
schema:
type: string
/fruit:
get:
responses:
"200":
description: OK
content:
application/json:
schema:
type: array
items:
$ref: '#/components/schemas/Fruit'
post:
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/Fruit'
responses:
"200":
description: OK
content:
application/json:
schema:
type: array
items:
$ref: '#/components/schemas/Fruit'
delete:
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/Fruit'
responses:
"200":
description: OK
content:
application/json:
schema:
type: array
items:
$ref: '#/components/schemas/Fruit'
components:
schemas:
Fruit:
type: object
properties:
description:
type: string
name:
type: string
You can further enhance/complete your OpenAPI documentation by adding MicroProfile OpenAPI annotations. You will need to rebuild/redeploy for those changes to be reflected in the OpenAPI document.
Rather than processing JAX-RS and MicroProfile OpenAPI annotations every time an application is deployed, WildFly can be configured to serve a static OpenAPI document. When serving a static document, typically, we also want to disable annotation processing. This is generally suggested for production environments, to ensure an immutable/versioned API contract for integrators.
-
Save the generated document to the source tree. Feel free to use JSON, if you prefer that over YAML.
$ mkdir src/main/webapp/META-INF $ curl http://localhost:8080/openapi?format=JSON > src/main/webapp/META-INF/openapi.json
-
Reconfigure the application to skip annotation scanning when processing the OpenAPI document model.
$ echo "mp.openapi.scan.disable=true" > src/main/webapp/META-INF/application.properties
-
Rebuild and redeploy the modified sample application.
The OpenAPI document model will now be built from the static content rather than annotation processing.
This quickstart includes integration tests, which are located under the src/test/
directory. The integration tests verify that the quickstart runs correctly when deployed on the server.
Follow these steps to run the integration tests.
-
Make sure WildFly server is started.
-
Make sure the quickstart is deployed.
-
Type the following command to run the
verify
goal with theintegration-testing
profile activated.$ mvn verify -Pintegration-testing
When you are finished testing the quickstart, follow these steps to undeploy the archive.
-
Make sure WildFly server is started.
-
Open a terminal and navigate to the root directory of this quickstart.
-
Type this command to undeploy the archive:
$ mvn wildfly:undeploy
You can use the WildFly JAR Maven plug-in to build a WildFly bootable JAR to run this quickstart.
The quickstart pom.xml
file contains a Maven profile named bootable-jar which configures the bootable JAR building:
<profile>
<id>bootable-jar</id>
<build>
<plugins>
<plugin>
<groupId>org.wildfly.plugins</groupId>
<artifactId>wildfly-maven-plugin</artifactId>
<configuration>
<discover-provisioning-info>
<version>${version.server}</version>
</discover-provisioning-info>
<bootable-jar>true</bootable-jar>
<!--
Rename the output war to ROOT.war before adding it to the server, so that the
application is deployed in the root web context.
-->
<name>ROOT.war</name>
<add-ons>...</add-ons>
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
...
</plugins>
</build>
</profile>
The plugin uses WildFly Glow to discover the feature packs and layers required to run the application, and provisions a server containing those layers.
If you get an error or the server is missing some functionality which cannot be auto-discovered, you can download the WildFly Glow CLI and run the following command to see more information about what add-ons are available:
wildfly-glow show-add-ons
-
Build the quickstart bootable JAR with the following command:
$ mvn clean package -Pbootable-jar
-
Run the quickstart application contained in the bootable JAR:
$ java -jar target/microprofile-openapi-bootable.jar
-
You can now interact with the quickstart application.
Note
|
After the quickstart application is deployed, the bootable JAR includes the application in the root context. Therefore, any URLs related to the application should not have the |
The integration tests included with this quickstart, which verify that the quickstart runs correctly, may also be run with a bootable jar.
Follow these steps to run the integration tests.
-
Make sure the bootable jar is provisioned.
$ mvn clean package -Pbootable-jar
-
Start the WildFly bootable jar, this time using the WildFly Maven Jar Plugin, which is recommend for testing due to simpler automation.
$ mvn wildfly:start-jar
-
Type the following command to run the
verify
goal with theintegration-testing
profile activated, and specifying the quickstart’s URL using theserver.host
system property, which for a bootable jar by default ishttp://localhost:8080
.$ mvn verify -Pintegration-testing -Dserver.host=http://localhost:8080
-
Shutdown the WildFly bootable jar, this time using the WildFly Maven Jar Plugin too.
$ mvn wildfly:shutdown
On OpenShift, the S2I build with Apache Maven uses an openshift
Maven profile to provision a WildFly server, deploy and run the quickstart in OpenShift environment.
The server provisioning functionality is provided by the WildFly Maven Plugin, and you may find its configuration in the quickstart pom.xml
:
<profile>
<id>openshift</id>
<build>
<plugins>
<plugin>
<groupId>org.wildfly.plugins</groupId>
<artifactId>wildfly-maven-plugin</artifactId>
<configuration>
<discover-provisioning-info>
<version>${version.server}</version>
<context>cloud</context>
</discover-provisioning-info>
<!--
The parent POM's 'openshift' profile renames the output archive to ROOT.war so that the
application is deployed in the root web context. Add ROOT.war to the server.
-->
<filename>ROOT.war</filename>
<add-ons>...</add-ons>
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
...
</plugins>
</build>
</profile>
You may note that unlike the provisioned-server
profile it uses the cloud context which enables a configuration tuned for OpenShift environment.
The plugin uses WildFly Glow to discover the feature packs and layers required to run the application, and provisions a server containing those layers.
If you get an error or the server is missing some functionality which cannot be auto-discovered, you can download the WildFly Glow CLI and run the following command to see more information about what add-ons are available:
wildfly-glow show-add-ons
This section contains the basic instructions to build and deploy this quickstart to WildFly for OpenShift or WildFly for OpenShift Online using Helm Charts.
-
You must be logged in OpenShift and have an
oc
client to connect to OpenShift -
Helm must be installed to deploy the backend on OpenShift.
Once you have installed Helm, you need to add the repository that provides Helm Charts for WildFly.
$ helm repo add wildfly https://docs.wildfly.org/wildfly-charts/
"wildfly" has been added to your repositories
$ helm search repo wildfly
NAME CHART VERSION APP VERSION DESCRIPTION
wildfly/wildfly ... ... Build and Deploy WildFly applications on OpenShift
wildfly/wildfly-common ... ... A library chart for WildFly-based applications
Log in to your OpenShift instance using the oc login
command.
The backend will be built and deployed on OpenShift with a Helm Chart for WildFly.
Navigate to the root directory of this quickstart and run the following command:
$ helm install microprofile-openapi -f charts/helm.yaml wildfly/wildfly --wait --timeout=10m0s
NAME: microprofile-openapi
...
STATUS: deployed
REVISION: 1
This command will return once the application has successfully deployed. In case of a timeout, you can check the status of the application with the following command in another terminal:
oc get deployment microprofile-openapi
The Helm Chart for this quickstart contains all the information to build an image from the source code using S2I on Java 17:
build:
uri: https://github.com/wildfly/quickstart.git
ref: 34.x
contextDir: microprofile-openapi
deploy:
replicas: 1
This will create a new deployment on OpenShift and deploy the application.
If you want to see all the configuration elements to customize your deployment you can use the following command:
$ helm show readme wildfly/wildfly
Get the URL of the route to the deployment.
$ oc get route microprofile-openapi -o jsonpath="{.spec.host}"
Access the application in your web browser using the displayed URL.
Note
|
The Maven profile named |
The integration tests included with this quickstart, which verify that the quickstart runs correctly, may also be run with the quickstart running on OpenShift.
Note
|
The integration tests expect a deployed application, so make sure you have deployed the quickstart on OpenShift before you begin. |
Run the integration tests using the following command to run the verify
goal with the integration-testing
profile activated and the proper URL:
$ mvn verify -Pintegration-testing -Dserver.host=https://$(oc get route microprofile-openapi --template='{{ .spec.host }}')
Note
|
The tests are using SSL to connect to the quickstart running on OpenShift. So you need the certificates to be trusted by the machine the tests are run from. |
For Kubernetes, the build with Apache Maven uses an openshift
Maven profile to provision a WildFly server, suitable for running on Kubernetes.
The server provisioning functionality is provided by the WildFly Maven Plugin, and you may find its configuration in the quickstart pom.xml
:
<profile>
<id>openshift</id>
<build>
<plugins>
<plugin>
<groupId>org.wildfly.plugins</groupId>
<artifactId>wildfly-maven-plugin</artifactId>
<configuration>
<discover-provisioning-info>
<version>${version.server}</version>
<context>cloud</context>
</discover-provisioning-info>
<!--
The parent POM's 'openshift' profile renames the output archive to ROOT.war so that the
application is deployed in the root web context. Add ROOT.war to the server.
-->
<filename>ROOT.war</filename>
<add-ons>...</add-ons>
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
...
</plugins>
</build>
</profile>
You may note that unlike the provisioned-server
profile it uses the cloud context which enables a configuration tuned for Kubernetes environment.
The plugin uses WildFly Glow to discover the feature packs and layers required to run the application, and provisions a server containing those layers.
If you get an error or the server is missing some functionality which cannot be auto-discovered, you can download the WildFly Glow CLI and run the following command to see more information about what add-ons are available:
wildfly-glow show-add-ons
This section contains the basic instructions to build and deploy this quickstart to Kubernetes using Helm Charts.
In this example we are using Minikube as our Kubernetes provider. See the Minikube Getting Started guide for how to install it. After installing it, we start it with 4GB of memory.
minikube start --memory='4gb'
The above command should work if you have Docker installed on your machine. If, you are using Podman instead of Docker, you will also need to pass in --driver=podman
, as covered in the Minikube documentation.
Once Minikube has started, we need to enable its registry since that is where we will push the image needed to deploy the quickstart, and where we will tell the Helm charts to download it from.
minikube addons enable registry
In order to be able to push images to the registry we need to make it accessible from outside Kubernetes. How we do this depends on your operating system. All the below examples will expose it at localhost:5000
# On Mac:
docker run --rm -it --network=host alpine ash -c "apk add socat && socat TCP-LISTEN:5000,reuseaddr,fork TCP:$(minikube ip):5000"
# On Linux:
kubectl port-forward --namespace kube-system service/registry 5000:80 &
# On Windows:
kubectl port-forward --namespace kube-system service/registry 5000:80
docker run --rm -it --network=host alpine ash -c "apk add socat && socat TCP-LISTEN:5000,reuseaddr,fork TCP:host.docker.internal:5000"
-
Helm must be installed to deploy the backend on Kubernetes.
Once you have installed Helm, you need to add the repository that provides Helm Charts for WildFly.
$ helm repo add wildfly https://docs.wildfly.org/wildfly-charts/
"wildfly" has been added to your repositories
$ helm search repo wildfly
NAME CHART VERSION APP VERSION DESCRIPTION
wildfly/wildfly ... ... Build and Deploy WildFly applications on OpenShift
wildfly/wildfly-common ... ... A library chart for WildFly-based applications
The backend will be built and deployed on Kubernetes with a Helm Chart for WildFly.
Navigate to the root directory of this quickstart and run the following commands:
mvn -Popenshift package wildfly:image
This will use the openshift
Maven profile we saw earlier to build the application, and create a Docker image containing the WildFly server with the application deployed. The name of the image will be microprofile-openapi
.
Next we need to tag the image and make it available to Kubernetes. You can push it to a registry like quay.io
. In this case we tag as localhost:5000/microprofile-openapi:latest
and push it to the internal registry in our Kubernetes instance:
# Tag the image
docker tag microprofile-openapi localhost:5000/microprofile-openapi:latest
# Push the image to the registry
docker push localhost:5000/microprofile-openapi:latest
In the below call to helm install
which deploys our application to Kubernetes, we are passing in some extra arguments to tweak the Helm build:
-
--set build.enabled=false
- This turns off the s2i build for the Helm chart since Kubernetes, unlike OpenShift, does not have s2i. Instead, we are providing the image to use. -
--set deploy.route.enabled=false
- This disables route creation normally performed by the Helm chart. On Kubernetes we will use port-forwards instead to access our application, since routes are an OpenShift specific concept and thus not available on Kubernetes. -
--set image.name="localhost:5000/microprofile-openapi"
- This tells the Helm chart to use the image we built, tagged and pushed to Kubernetes' internal registry above.
$ helm install microprofile-openapi -f charts/helm.yaml wildfly/wildfly --wait --timeout=10m0s --set build.enabled=false --set deploy.route.enabled=false --set image.name="localhost:5000/microprofile-openapi"
NAME: microprofile-openapi
...
STATUS: deployed
REVISION: 1
This command will return once the application has successfully deployed. In case of a timeout, you can check the status of the application with the following command in another terminal:
kubectl get deployment microprofile-openapi
The Helm Chart for this quickstart contains all the information to build an image from the source code using S2I on Java 17:
build:
uri: https://github.com/wildfly/quickstart.git
ref: 34.x
contextDir: microprofile-openapi
deploy:
replicas: 1
This will create a new deployment on Kubernetes and deploy the application.
If you want to see all the configuration elements to customize your deployment you can use the following command:
$ helm show readme wildfly/wildfly
To be able to connect to our application running in Kubernetes from outside, we need to set up a port-forward to the microprofile-openapi
service created for us by the Helm chart.
This service will run on port 8080
, and we set up the port forward to also run on port 8080
:
kubectl port-forward service/microprofile-openapi 8080:8080
The server can now be accessed via http://localhost:8080
from outside Kubernetes. Note that the command to create the port-forward will not return, so it is easiest to run this in a separate terminal.
Note
|
The Maven profile named |
The integration tests included with this quickstart, which verify that the quickstart runs correctly, may also be run with the quickstart running on Kubernetes.
Note
|
The integration tests expect a deployed application, so make sure you have deployed the quickstart on Kubernetes before you begin. |
Run the integration tests using the following command to run the verify
goal with the integration-testing
profile activated and the proper URL:
$ mvn verify -Pintegration-testing -Dserver.host=http://localhost:8080